Symmetric convex sets with minimal Gaussian surface area

نویسندگان

چکیده

Let $\Omega\subset\Bbb{R}^{n+1}$ have minimal Gaussian surface area among all sets satisfying $\Omega=-\Omega$ with fixed volume. $A=A_x$ be the second fundamental form of $\partial\Omega$ at $x$, i.e., $A$ is matrix first order partial derivatives unit normal vector $x\in\partial\Omega$. For any $x=(x_1,\ldots,x_{n+1})\in\Bbb{R}^{n+1}$, let $\gamma_n(x)=(2\pi)^{-n/2}e^{-(x_1^2+\cdots+x_{n+1}^2)/2}$. $\|A\|^{2}$ sum squares entries $A$, and $\|A\|_{2\to 2}$ denote $\ell_{2}$ operator norm $A$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Convex Sets with Minimal Gaussian Surface Area

Let Ω ⊆ R have minimal Gaussian surface area among all sets satisfying Ω = −Ω with fixed Gaussian volume. Let A = Ax be the second fundamental form of ∂Ω at x, i.e. A is the matrix of first order partial derivatives of the unit normal vector at x ∈ ∂Ω. For any x = (x1, . . . , xn+1) ∈ R, let γn(x) = (2π)−n/2e−(x 2 1+···+x 2 n+1. Let ‖A‖ be the sum of the squares of the entries of A, and let ‖A‖...

متن کامل

Symmetric Convex Sets with Minimal Gaussian Surface Area

Abstract. Let Ω ⊆ R have minimal Gaussian surface area among all sets satisfying Ω = −Ω with fixed Gaussian volume. Let A = Ax be the second fundamental form of ∂Ω at x, i.e. A is the matrix of first order partial derivatives of the unit normal vector at x ∈ ∂Ω. For any x = (x1, . . . , xn+1) ∈ R, let γn(x) = (2π)−n/2e 2 1+···+x 2 n+1. Let ‖A‖2 be the sum of the squares of the entries of A, and...

متن کامل

Gaussian Correlation Conjecture for Symmetric Convex Sets

Gaussian correlation conjecture states that the Gaussian measure of the intersection of two symmetric convex sets is greater or equal to the product of the measures. In this paper, firstly we prove that the inequality holds when one of the two convex sets is the intersection of finite centered ellipsoids and the other one is simply symmetric. Then we prove that any symmetric convex set can be a...

متن کامل

Convex Sets and Minimal Sublinear Functions

We show that, given a closed convex set K with the origin in its interior, the support function of the set {y ∈ K∗ | ∃x ∈ K such that xy = 1} is the pointwise smallest sublinear function σ such that K = {x |σ(x) ≤ 1}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2021

ISSN: ['0002-9327', '1080-6377']

DOI: https://doi.org/10.1353/ajm.2021.0000